PDS Lab

Section 16
Autumn-2018

Tutorial 2

Language Elements in C

What are the different elements you can find in the following program?

include<stdio.h>
define PI4 BY 3 4. 1887902048
double radius= 10;

double volOfSphere (double 1)
{
return PI4 BY 3 * r * r *r;

}

main ()

{

double volume;

volume =volOfSphere (radius);
printf(" Radius= %1f, volume= %lf.\n" , radius, volume)’

The C language alphabet

- Uppercase letters ‘A’ to ‘Z°
- Lowercase letters ‘a’ to ‘z’

- Digits ‘0’ to ‘9’

© D. Samanta, IIT

« C special characters:

<=1 .1 _
(D)l |8
% ([]| # | ?
' & { } n
AL
- N~ |+
- White space character in C
\b blank space
\t horizontal tab
\v vertical tab
\r carriage return
\f form feed
\n new line
\\ Back slash
V Single quote
\" Double quote
\? Question mark
\0 Null
\a Alarm (bell)
ASCH|Symbol|]ASCII[Symbol]ASCI[Symbol]ASCII[Symbol
0 NUL 16 | DLE 32 |(space)| 48 0
1 SOH 17 | DC1 33 ! 49 1
2 STX 18 | DC2 34 " 50 2
3 ETX 19 | DC3 35 # 51 3
4 EOT | 20 | DC4 36 $ 52 4
5 ENQ | 21 | NAK | 37 % 53 5
6 ACK | 22 | SYN | 38 & 54 6
7 BEL 23 ETB 39 ' 55 7
8 BS 24 | CAN | 40 (56]
9 TAB | 25 EM 41) 57 9
10 LF 26 | SUB 42 * 58 .
11 VT 27 ESC 43 + 59)
12| FF | 28 | FS |44 | , |60 | 2
13 CR 29 GS 45 - 61 _
14 SO 30 RS 46 . 62 S
15 SI 31 US 47 / 63 9

© D. Samanta, IIT

ASCISymbol|ASCII[Symbol|ASCII[SymbolfASCI1[Symbol|

4 | @ | s0o| P [96 | ~ [112

65| A |81] @ |97 | a [113] P
66| B [s2]| R | o8| b [14] 1
67| c |83 | s || c [15]
68| D [s4| T |1w00| a [116] ;
6 | E [s8s| u || e 17| |
70| F [se| v |w2f f [us| °
7| G [s7 | w 3| g [19] O
72| H |88 | X |104] h |120] 7
730 1 I'so | v [1ws]| i |12

74| 1 [0]| z |we| j |12
5 K for | p o7 k|23]
6 | Lofo2 | v fuos |1 24|
77 M oL o3 T [| m 25|
78| N 94| ~ |10 n |126] 7
791 o los| 11| o |127

C language recognizes total 256 ASCII codes; other 128 ASCII codes are for
extended characters’ symbols

- Keywords
- Keywords are those words whose meaning is already defined by
Compiler; also called “reserved words” and cannot be used in
identifier declaration
+ There are 32 keywords in C

auto double int struct
break else fong switch
case enum register typedef
char extern |return |union
const float short unsigned
continue for signed |void
default |goto sizeof |volatile
do it static |while

C is a case-sensitive programming language!

© D. Samanta, IIT

Declaration of Variables
Which one of the following is a valid name of a C variable?
2ab ¢
Switch
xy#1
"rst"
Xy
case

Rules
- Names given to various program elements (variables, constants,
functions, etc.)

. May consist of letters, digits and the underscore (‘_’) character, with no
space between.

. Blank and comma are not allowed.
. First character must be an alphabet or underscore.
. An identifier can be arbitrary long.

. Identifier should not be a reserved word.

Note: C is a case sensitive programming language

. ‘area’, ‘AREA’ and ‘Area’ are all different.

© D. Samanta, IIT

Different types of Constants

Integer Floatinf point
12345 +596
3.141414 2147483647
23000000 2.3e7
0.123e-12 1.7E+308
Ca) cca”
“14CS10003”
x =3.1441 y="‘a

© D. Samanta, IIT

Character

-137

Alpha-numeric

— 2147483648

3.45e23

“IIT Kharagpur”

name = “Debasis” e

Data Types in C

Data Types

char 1 -128 to 127 or 0 to 255

unsigned char 1 0 to 255

signed char 1 -128 to 127

int 20r4 -32,768 to 32,767 or -2,147,483,648 to

2,147,483,647
unsigned int 2 or 4 0 to 65,535 or 0 to 4,294,967,295

short 2 -32,768 to 32,767

unsigned short 2 0 to 65,535

long 4 -2,147,483,648 to 2,147,483,647

unsigned long 4 0 t0 4,294,967,295

float 4 1.2E-38 to 6 decimal places
3.4E+38

double 8 2.3E-308 to 15 decimal places
1.7E+308

long double 10 3.4E-4932 19 decimal places
to
1.1E+4932

© D. Samanta, IIT

What is the meaning?

scanf (“%c%d%f”, &x, &y, &z);

printf (“%c %c %1, X, y, 2);

{

#include <stdio.h>
int main{)

Address of the variable "speed”

float speed, time, dista

scanft (“%f %f"”, &speed, &time);
distance = speed * time;
printf (“\n e distance traversed is: \n", distance};

return 0;

Content of the variable “speed”

© D. Samanta, IIT

Assignment in C

- Used to assign values to variables, using the assignment
operator (=).

- General syntax:
variable name = expression;

Examples:
velocity = 20;
b=15;temp = 12.5;
A=A+ 10;
v=ut+f*t
s=u*t+05*f*t*t

. Assignment during declaration
int speed = 30;
char flag = ‘y’;

- Multiple variable assignment

a=b=c=5;
flagl = flag2 = ‘y’;
speed = flow = 20.0;

© D. Samanta, IIT

In addition to = operator, C has a set of shorthand assignment
operators of the form

var_name op = expression;

This is equivalent to
var _name = var_name op expression;

Examples
X +=y+l; 2 x=x+ (y+1);

X -=y 2 X =X-Yy;
a *=a; 2> a=a%*a;

m %=n; 2 m = m%n;

Examples:

Given m = 0.1kg, ¢ = 3.0e8 m/sec, then find the energy that
will be converted.

e = mc?

Calculate T given a value of | and g using the formula

T=27T\/Z
g

© D. Samanta, IIT

Operators in C

Arithmetic Operators

Relational Operators

Logical Operators

Arithmetic Operators

. Addition: +
. Subtraction:
- Multiplication: *

- Division: /
- Modulus: %
Examples:

distance = rate * time ;
netlncome = income - tax ;
speed = distance / time ;

area = PI * radius * radius;
y=a*x*x+b*x+c;
quotient = dividend / divisor;

remain = dividend % divisor;

© D. Samanta, IIT

Example

© D. Samanta, IIT

x=13;y=5;

X+y 18
X—-y 8
x*y 65
xly 2
X%y 3

Increment and Decrement Operators
Increment operator ++
It adds 1 to its operand

++x; (prefix operator)
x++; (postfix operator)

These are equivalent to x =x + 1;
y = ++X; is equivalent toy = x + 1;

Note:

y = ++x; and y = x++; are different.
++x increments x before its value is used, while
x++ increments x after its value has been used.

s ox
yeem oo

-

Decrement operator --

It subtracts 1 from its operand

--x; (prefix operator)
x--; (postfix operator)

© D. samantal}§S€ are equivalent to x = x - 1;

Note: y = x--; is not same as y = --x;
Note: increment (++) and decrement (--) operators are only
applicable to variables (integer).

Examples:

(1+j)++; is illegal! This is because (i+)) is not an integer variable
name.

Suppose, a =10, b = 5; Following two in sequence, if executed
¢ =++a—b will result c = 6;

¢ =b--+a will result c = 16;

Evaluate the following expressions:
3+-5*%-2 10
10-5-7/4*4
3>5-2

3+5%2-1

© D. Samanta, IIT

Relational Operators

< is less than

> Is greater than

<= Is less than or equal to
>= Is greater than or equal to
== is equal to

I= is not equal to

Example:
a+b>c—d isthesameas (atb)>(c-d)

Sample code segment in C

if (x>y)

printf (“%d is larger\n”, x);
else

printf (“%d is larger\n”, y);

© D. Samanta, IIT

Logical Operators

There are two logical operators in C (also called logical
connectives).

&& > Logical AND
|| - Logical OR
! > Logical NOT
What they do?
. They act upon operands that are themselves logical
expressions.

- The individual logical expressions get combined into
more complex conditions that are true or false.

Example

(a>b) && (¢ < d) || ((a-b) = (c-d)
results TRUE ifa=5,b=2,c=1andd=4

© D. Samanta, IIT

Associativity and Precedence of Operators

() Left to Right 1
- (unary)
--, T+ Right to Left 2
I~
* 1, % Left to Right 3
o Left to Right 4
<<, >> Left to Right 5
< <=, >, >= Left to Right 6
==, I= Left to Right 7
& Left to Right 8
A Left to Right 4]
| Left to Right 10
&& Left to Right 11
| Left to Right 12
?: Right to Left 13
Examples:
v=u-+{f*t; - v = ut+(f*t);
X=x*y/z > X = (x*y)/z

A=a+tb-c*d/e 2> A=((atb)-((c*d)/e))
A=-b*c+d%e =2 A = (((-b)*c)+(d%e))

Example:

atb*c—d/e 2> at+(b*c)—(d/e)
a*-b+d%e—f 2> a*(=b)+(d%e)—f
a -©b. GakattahiT 2 (((a-b)+c¢c)+d)
X*y*z 2 (x*y)*2)
atb+tc*d*e 2 (at+b)+((c*d) *e)

Integer arithmetic
- When the operands in an arithmetic expression are integers,
the expression is called integer expression, and the operation
is called integer arithmetic.
- Integer arithmetic always yields integer values.

. Operators applicable
All arithmetic operators
- All logical operators
- All relational operators
- All increment and decrement operators
- All bit-wise operators

Real Arithmetic
- Arithmetic operations involving only real or floating-point
operands.
Since floating-point values are rounded to the number of
significant digits permissible, the final value is an
approximation of the final result.

Examples
1.0/3.0 * 3.0 will have the value 0.99999 and not 1.0
a=22.0/7.0%7*7 = (((22.0/7.0)*7)*7) = 153.86
b =22%7/7*7 = (((22*7)/7)*7) = 154

Mixed-mode Arithmetic
- If either operand is of the real type, then only real arithmetic
is performed, and the result is a real number.

25/10 = 2
25/10.0 = 2.5

© D. Samanta, IIT

C language permits mixing of constants and variables of
different types in an expression
- During evaluation it adheres to very strict rules of type
conversion
- If operands are of different types, the lower type is
automatically converted to the higher type before the
operation proceeds LOWER int <long < float <
double HIGHER
char and short are automatically converted to int.
- If one operand is unsigned, then other is converted to
unsigned and the result is in unsigned
float is automatically converted to double
- If one operand is double, then other is converted to
double and the result is in double
- If one operand is long, then the other operand is
converted to long

Type casting

C language allows to force a type conversion, which is
different than the automatic type conversion

The syntax for such a type casting is
(type_name) expression;

Examples
inta=4,b=235; float x; double y;

x = (float) a/ b; // division is done in floating point mode, x = 0.8
a=(int) x /b; // Result is converted to integer by truncation, a=0

y = (char) b/ a; // 1t may report wrong type conversion
© D. Samanta, IIT

Assume that variables aand b have data type Int and variable
c and d have data type float. Also,a=9,b=38,c=16.0,and d =
6.0. For each question write the value assigned to the variable z.
Data type of z is float.

z=atc/4*d/3+b;
z=cta/4*b/3+d;
z =(int)c/a * b/3;

z=a/b* b%5 %3 *c;

What will be the output in the following C Programs?

Program #1

#include <stdio.h>
int main)

L
int n;
scanf("'%d",&n);
printf(""%d\n",1/n);
return O;

by

© D. Samanta, IIT

Program #2

#include <stdio.h>
int main)

L
int n;
scant("'%d"",&n) ;
printf("'%f\n",1/n);
return O;

+

Program #3

#include <stdio.h>
int main

L
int n;
scant("'%d"",&n) ;
printf("%f\n",1.0/n);
return O;

}

Program #4

#include <stdio.h>
int main ()

{
int n; float X;
scanf("'%d",&n) ;
X = (float)1l/n;
printf("'%f\n"",x);
return O;

}

© D. Samanta, IIT

Important links:

http://cse.iitkgp.ac.in/~dsamanta/courses/pds/index.html

© D. Samanta, IIT

