

© D. Samanta, IIT

PDS Lab
Section 16

Autumn-2018

Tutorial 2

Language Elements in C

What are the different elements you can find in the following program?

The C language alphabet

• Uppercase letters ‘A’ to ‘Z’

• Lowercase letters ‘a’ to ‘z’

• Digits ‘0’ to ‘9’

© D. Samanta, IIT

• C special characters:

, < > . _

() ; $:

% [] # ?

' & { } "

^ ! * / |

- \ ~ +

• White space character in C

\b blank space
\t horizontal tab
\v vertical tab
\r carriage return
\f form feed
\n new line
\\ Back slash
 \’ Single quote
\" Double quote
\? Question mark
\0 Null
\a Alarm (bell)

ASCIISymbol

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS

TAB
LF
VT
FF
CR
SO
SI

ASCIISymbol
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

ASCIISymbol
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

(space)
!
"

$
%
&
'
(
)
*
+
,
-
.
/

ASCIISymbol
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

© D. Samanta, IIT

ASCIISymbol
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

ASCIISymbol
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

ASCIISymbol
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o

ASCIISymbol
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

C language recognizes total 256 ASCII codes; other 128 ASCII codes are for
extended characters’ symbols

• Keywords

• Keywords are those words whose meaning is already defined by
Compiler; also called “reserved words” and cannot be used in
identifier declaration

• There are 32 keywords in C

auto double int struct

break else long switch
case enum register typedef

char extern return union
const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

C is a case-sensitive programming language!

© D. Samanta, IIT

Declaration of Variables

Which one of the following is a valid name of a C variable?

2ab_c

Switch

xy#1

"rst"

x y

case

Rules

• Names given to various program elements (variables, constants,
functions, etc.)

• May consist of letters, digits and the underscore (‘_’) character, with no

space between.

• Blank and comma are not allowed.

• First character must be an alphabet or underscore.

• An identifier can be arbitrary long.

• Identifier should not be a reserved word.

Note: C is a case sensitive programming language

• ‘area’, ‘AREA’ and ‘Area’ are all different.

© D. Samanta, IIT

Different types of Constants

12345 +596 -137

3.141414 2147483647 – 2147483648

23000000 2.3e7 3.45e23

0.123e-12 1.7E+308

‘a’ “a” “IIT Kharagpur”

“14CS10003”

x = 3.1441 y = ‘a’ name = “Debasis” ?

© D. Samanta, IIT

Data Types in C

Data Types

Type

Storage
size

(in byte)

Value range

char 1 -128 to 127 or 0 to 255

unsigned char 1 0 to 255

signed char 1 -128 to 127

 int 2 or 4 -32,768 to 32,767 or -2,147,483,648 to

2,147,483,647

unsigned int 2 or 4 0 to 65,535 or 0 to 4,294,967,295

short 2 -32,768 to 32,767

unsigned short 2 0 to 65,535

long 4 -2,147,483,648 to 2,147,483,647

unsigned long 4 0 to 4,294,967,295

float 4 1.2E-38 to

3.4E+38

6 decimal places

double 8 2.3E-308 to
1.7E+308

15 decimal places

long double 10 3.4E-4932
to
1.1E+4932

19 decimal places

© D. Samanta, IIT

What is the meaning?

scanf (“%c%d%f”, &x, &y, &z);

printf (“%c %c %f”, x, y, z);

© D. Samanta, IIT

Assignment in C

• Used to assign values to variables, using the assignment

operator (=).

• General syntax:

variable_name = expression;

 Examples:

 velocity = 20;

 b = 15; temp = 12.5;

 A = A + 10;

 v = u + f * t;

 s = u * t + 0.5 * f * t * t;

• Assignment during declaration

int speed = 30;

char flag = ‘y’;

• Multiple variable assignment

a = b = c = 5;

flag1 = flag2 = ‘y’;

speed = flow = 20.0;

© D. Samanta, IIT

• In addition to = operator, C has a set of shorthand assignment

operators of the form
•
 var_name op = expression;

 This is equivalent to
 var_name = var_name op expression;

Examples

 x += y+1;  x = x + (y+1);

 x -= y  x = x-y;

 a *= a;  a = a*a;

 m %= n;  m = m%n;

Examples:

Given m = 0.1kg, c = 3.0e8 m/sec, then find the energy that
will be converted.

 ݁ ൌ ݉ܿଶ

Calculate T given a value of l and g using the formula

 ܶ ൌ ටߨ2

௟

௚

© D. Samanta, IIT

Operators in C

Arithmetic Operators

• Addition: +

• Subtraction: -

• Multiplication: *

• Division: /

• Modulus: %
•

Examples:

distance = rate * time ;

netIncome = income - tax ;

speed = distance / time ;

area = PI * radius * radius;

y = a * x * x + b*x + c;

quotient = dividend / divisor;

remain = dividend % divisor;

Arithmetic Operators

Relational Operators

Logical Operators

© D. Samanta, IIT

Example

x = 13; y = 5;

© D. Samanta, IIT

Increment and Decrement Operators

Increment operator ++

It adds 1 to its operand

 ++x; (prefix operator)

 x++; (postfix operator)

These are equivalent to x = x + 1;

 y = ++x; is equivalent to y = x + 1;

Note:
 y = ++x; and y = x++; are different.
 ++x increments x before its value is used, while

 x++ increments x after its value has been used.

x = 5; x y

y = ++x; 6 6

y = x++; 6 5

Decrement operator --

It subtracts 1 from its operand

--x; (prefix operator)

 x--; (postfix operator)

 These are equivalent to x = x - 1;

© D. Samanta, IIT

Note: y = x--; is not same as y = --x;

Note: increment (++) and decrement (--) operators are only
applicable to variables (integer).

Examples:

(i + j)++; is illegal! This is because (i+j) is not an integer variable
name.

Suppose, a = 10, b = 5; Following two in sequence, if executed

 c = ++a – b will result c = 6;

 c = b-- + a will result c = 16;

Evaluate the following expressions:

3+-5*-2 10

10 - 5 - 7 / 4 * 4

3 > 5 – 2

3 + 5%2 - 1

© D. Samanta, IIT

Relational Operators

Example:
 a + b > c – d is the same as (a+b) > (c-d)

Sample code segment in C

 if (x > y)

 printf (“%d is larger\n”, x);

 else

 printf (“%d is larger\n”, y);

© D. Samanta, IIT

Logical Operators

There are two logical operators in C (also called logical
connectives).

 &&  Logical AND

 | |  Logical OR

 !  Logical NOT

What they do?

• They act upon operands that are themselves logical
expressions.

• The individual logical expressions get combined into
more complex conditions that are true or false.

Example

 (a > b) && (c < d) || ((a-b) != (c-d))
 results TRUE if a = 5, b = 2, c = 1 and d = 4

© D. Samanta, IIT

Associativity and Precedence of Operators

Operator Associativity Precedence

() Left to Right 1

‐ (unary)

Right to Left 2 --, ++

!, ~

*, /, % Left to Right 3

+, - Left to Right 4

<<, >> Left to Right 5

<, <=, >, >= Left to Right 6

== , != Left to Right 7

& Left to Right 8

^ Left to Right 9

| Left to Right 10

&& Left to Right 11

|| Left to Right 12

?: Right to Left 13

Examples:
v = u + f * t;  v = u+(f*t);

X = x * y / z  X = (x*y)/z

A = a + b – c * d / e  A = ((a+b)-((c*d)/e))

A = -b * c + d % e  A = (((-b)*c)+(d%e))

Example:
a + b * c – d / e  a + (b * c) – (d / e)

a * – b + d % e – f  a * (– b) + (d % e) – f

a – b + c + d  (((a – b) + c) + d)

x * y * z  ((x * y) * z)

a + b + c * d * e  (a + b) + ((c * d) * e)

© D. Samanta, IIT

Integer arithmetic
• When the operands in an arithmetic expression are integers,

the expression is called integer expression, and the operation
is called integer arithmetic.

• Integer arithmetic always yields integer values.

• Operators applicable

• All arithmetic operators

• All logical operators

• All relational operators

• All increment and decrement operators

• All bit-wise operators

Real Arithmetic

• Arithmetic operations involving only real or floating-point
operands.

• Since floating-point values are rounded to the number of
significant digits permissible, the final value is an
approximation of the final result.

Examples

1.0 / 3.0 * 3.0 will have the value 0.99999 and not 1.0

 a = 22.0/7.0*7*7 = (((22.0/7.0)*7)*7) = 153.86

 b = 22*7/7*7 = (((22*7)/7)*7) = 154

Mixed-mode Arithmetic
• If either operand is of the real type, then only real arithmetic

is performed, and the result is a real number.

 25 / 10  2

 25 / 10.0  2.5

© D. Samanta, IIT

• C language permits mixing of constants and variables of
different types in an expression

• During evaluation it adheres to very strict rules of type
conversion

• If operands are of different types, the lower type is
automatically converted to the higher type before the
operation proceeds LOWER int < long < float <
double HIGHER

• char and short are automatically converted to int.
• If one operand is unsigned, then other is converted to

unsigned and the result is in unsigned

• float is automatically converted to double

• If one operand is double, then other is converted to
double and the result is in double

• If one operand is long, then the other operand is
converted to long

Type casting

• C language allows to force a type conversion, which is
different than the automatic type conversion

• The syntax for such a type casting is
 (type_name) expression;

Examples

int a = 4, b = 5; float x; double y;

x = (float) a / b; // division is done in floating point mode, x = 0.8

a = (int) x / b; // Result is converted to integer by truncation, a = 0

y = (char) b / a; // It may report wrong type conversion

© D. Samanta, IIT

Assume that variables a and b have data type int and variable
c and d have data type float. Also, a = 9, b = 8, c = 16.0, and d =
6.0. For each question write the value assigned to the variable z.
Data type of z is float.

z = a + c / 4 * d / 3 + b;

z = c + a / 4 * b / 3 + d ;

z = (int) c / a * b / 3 ;

z = a / b * b % 5 % 3 *c;

What will be the output in the following C Programs?

Program #1

#include <stdio.h>

int main ()

{

 int n;

 scanf("%d",&n);

 printf("%d\n",1/n);

 return 0;

}

© D. Samanta, IIT

Program #2

#include <stdio.h>

int main ()

{

 int n;

 scanf("%d",&n);

 printf("%f\n",1/n);

 return 0;

}

Program #3
#include <stdio.h>

int main ()

{

 int n;

 scanf("%d",&n);
 printf("%f\n",1.0/n);

 return 0;

}

Program #4

#include <stdio.h>
int main ()
{

int n; float x;
scanf("%d",&n);

x = (float)1/n;
printf("%f\n",x);
return 0;

}

© D. Samanta, IIT

Important links:

http://cse.iitkgp.ac.in/~dsamanta/courses/pds/index.html

